Clustering in non-self-conjugate nuclei

V.Z. Goldberg, M. Avila,¹ S. Cherubini,² G.V. Rogachev,¹ M. Gulino,² E.D. Johnson,¹

A.N. Kuchera,¹ M. La Cognata,² L. Lamia,² S. Romano,² L.E. Miller,¹ R.G. Pizzone,² G.G. Rapisarda,²

M.L. Sergi,² C. Spitaleri,² R.E. Tribble, W.H. Trzaska,³ A. Tumino²

¹Department of Physics, Florida State University, Tallahassee, Florida

²Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali del Sud, Catania, Italy

³Physics Department, University of Jyvaskyla, Jyvaskyla, Finland

1. Introduction

Clustering is a well established phenomenon in light N=Z (4N) nuclei. The low excitation energy spectrum of ⁸Be can be described as a two-center α - α structure[1]. Strong α -cluster quasi-rotational bands (inversion doublets) are known in ¹⁶O and ²⁰Ne [2, 3]. The members of these bands have large reduced α widths, comparable to the single particle limit, which is the maximum possible reduced width that a nuclear resonance can have if it has a pure α +core structure. The α -cluster structure of 4N (N = Z) nuclei has been studied extensively, however much less information is available on the α -cluster structure of non-self-conjugate N \neq Z nuclei. Experimental study of clustering in T=1 spectrum of ¹⁰B and is reported in this contribution.

2. T=1 states in ¹⁰B

The suggestion that the structure of certain states in ¹⁰Be can be better described using two center model where "valence" nucleons are added to the system of two α -particles has been made in the early 1970s.[1] A semi-quantitative discussion of this subject can be found in [4] where the two-center molecular states in ⁹B, ⁹Be, ¹⁰Be, and ¹⁰B nuclei were considered in the framework of a two-center shell model. An Antisymmetrized Molecular Dynamics plus Hartree-Fock (AMD+HF) approach was proposed in [5] as a theoretical tool to study the structure of low-lying levels in ^{9, 10, 11}Be isotopes. Deformation (distance between the two α for several low-lying states in Be isotopes has been studied. Very large deformation (β =0.852) for the 6.179 MeV 0+ state in ¹⁰Be was suggested which corresponds to an interalpha distance of 3.55 fm. This is 1.8 times more than the corresponding value for the ¹⁰Be ground state. A similar result was obtained in [6] where the spectrum of ¹⁰Be was reasonably well reproduced using a molecular orbit (MO) model. It was shown that the second 0^+ in ¹⁰Be has an enlarged α - α distance and that the highly deformed rotational band with large moment of inertia built on that configuration emerges. The two known states in 10 Be, the 0+ at 6.179 MeV and the 2⁺ at 7.542 MeV are believed to be associated with this rotational band. The experimental evidence for the 4+ member of this band is controversial. The state at excitation energy of 10.15 MeV was assigned spin-parity of 3⁻ in [7]. However, in [8, 9] the 4^+ spin-parity assignment was suggested for this state. It was argued in [9] that the 10.15 MeV state is the next member of the highly deformed $K^{\pi}=0^+$ rotational band built on the 0^+ state at 6.179 MeV and that the very large moment of inertia of this band indicates (α :2n: α) configuration. If this

is the case then an analogous band with (α :np: α) configuration should be found in the spectrum of T=1 states in ¹⁰B. Properties of T=1 states in ¹⁰B are studied in this contribution.

The experiment was performed at the INFN facility in Catania, Italy. T=1 resonances in ¹⁰B were searched for in the excitation functions of ¹H(⁹Be, α)⁶Li*(T=1, 0⁺, 3.56 MeV) reaction. While both T=0 and T=1 states can be populated in ⁹Be+p scattering, only the T=1 states would predominantly decay to the T=1 state in ⁶Li by α emission due to isospin conservation and the T=0 states would be strongly suppressed in the ¹H(⁹Be, α)⁶Li*(T=1, 0+, 3.56 MeV) excitation function. Excitation functions of ¹H(⁹Be, α)6Li*(T=1, 0+, 3.56 MeV) were measured by changing the beam energy from 22:3 up to 55:6 MeV with steps ranging between 0.12 and 5.75 MeV (0.012 MeV and 0.575 MeV in c.m.). Both reaction products, α and ⁶Li, were detected. The ¹H(⁹Be, α)⁶Li*(T=1, 0⁺, 3.56 MeV) events were selected using angle-energy correlation of ⁶Li ions identified using Δ E-E 2-D spectra. The excitation functions for the ¹H(9Be, α)⁶Li*(T=1, 0⁺, 3.56 MeV) reaction were measured in the c.m. energy range between 2.1 and 5.5 MeV (8.7 - 12.1 MeV excitation in ¹⁰B). The excitation function at 55 ± 2.5⁰ in c.m. is shown in Fig. 1. The narrow peak at Ecm = 2.3 MeV corresponds to the doublet of known T=1 states in ¹⁰B, the 3⁻ and the 2⁺ at Ex = 8.9 MeV. Spin-parities and widths of these states are known, but the decay branching ratios are not. This data allows for direct measurement of the partial α -widths for these states.

FIG. 1. 1 H(9 Be, α)6Li*(T=1, 0⁺, 3.56 MeV) excitation function at 55⁰ in c.m. Solid (red) curve is the best R-Matrix fit.

A multi-channel, multi-level R-matrix analysis of the excitation functions was performed. The reduced width amplitudes were constrained in the R-matrix fit by requiring that corresponding proton and

neutron reduced width amplitudes are equal, as determined by the isospin Clebsch-Gordon coefficients for the T=1 states in 10 B. The parameters of the resonances are given in Table I. More details on this analysis can be found in [10].

J^{π}	E_{cm} (MeV)	E_x (MeV)	$\Gamma_{tot} \ (\mathrm{keV})$	$\Gamma_{\alpha} \ (\text{keV})$	$\Gamma_p \ (\mathrm{keV})$	$\Gamma_n \ (\text{keV})$	$ heta_{lpha}^2$
2^{+}	2.308(2)	8.894(2)	34(4)	$18 \pm 2.0 \pm 2.3$	7(4)	2(1)	1.1(2)
3^{-}	2.312(10)	8.898(10)	80(10)	0.57(5)	75(10)	4(3)	0.42(4)
2^{+}	4.1(1)	10.7(1)	$300 \pm 100^{)}$	≈ 8	≈ 170	≈ 130	≈ 0.007
(0^+)	4.4(3)	11.0(3)	$3700\substack{+200\\-600}$	$2800\substack{+200\\-600}$	514(100)	414(100)	$0.97\substack{+0.06\\-0.20}$
1^{-}	5.04(7)	11.63(7)	480(150)	13(6)	260(100)	210(120)	0.004(2)

Table I. Resonance parameters from the *R*-matrix fit.

As it was mentioned above, several theoretical approaches predict a developed α -2n- α structure for 0⁺/2⁺/4⁺ band with 0⁺ bandhead at 6.179 MeV in ¹⁰Be. The same should be true for the corresponding analog states in ¹⁰B. The most direct experimental observable for the degree of clustering is the partial α width. The excitation energies of the 0⁺ states in both ¹⁰Be and ¹⁰B are below the corresponding α decay thresholds. The partial α widths for the 2⁺ states were unknown in both nuclei. The 18±2.0±2.3(sys) keV partial α width for the 2+ state at 8.89 MeV in ¹⁰B determined in this experiment corresponds to the α single particle limit. In fact, this width can be well reproduced in the framework of a simple ⁶Li(T=1)+ α potential model. The Woods-Saxon potential with depth of -119 MeV, radius and charge radius of 2.58 fm and 2.27 fm respectively, and diffuseness of 0.677 fm generates the 0⁺ and the 2⁺ α -cluster states in excellent agreement with the spectra of ¹⁰B and ¹⁰Be and predicts the 15 keV width for the purely α – cluster 2⁺ state at 8.894 MeV in ¹⁰B (0.870 MeV above the ⁶Li(0⁺, 3.56 MeV)+ α decay threshold).

The very large partial α width of the 2⁺ state at 8.89 MeV measured in this work leaves no doubt about its α -⁶Li(T=1) molecular type nature. This confirms the assertion made in several theoretical and experimental works [5, 6, 9] that this state (or its analog at Ex=7.542 MeV in ¹⁰Be) is a member of a highly clustered rotational band built on the 0+ state at $E_x=7.56$ MeV in ¹⁰B (6.179 MeV in ¹⁰Be). The defining feature of this band is its high moment of inertia which is indicative of the large separation between the two α cores [5]. Assuming that the 10.15 MeV state observed in [9] is the 4⁺ member of the analogous band in ¹⁰Be it can be expected that the excitation energy of the corresponding 4^+ in ¹⁰B is ~11.5 MeV. Indeed, if this state has a large dimensionless reduced α width as suggested in [9] for the presumably analogous 10.15 MeV state in ¹⁰Be then there is a good chance to see it in the ¹H(⁹Be, α)⁶Li (T=1) reaction. The 2⁺ resonance at 8.89 MeV that is considered to be a member of the same rotational band as the aforementioned 4⁺ is the dominant feature in the measured excitation function (Fig. 1). However, the 4⁺ state has not been observed in this work. Besides a trivial reason for not seeing this state because it does not exist or is at higher excitation energy, we can offer another explanation. If this state corresponds to pure α +⁶Li(T=1) molecular configuration and the admixture of the ⁹Be(g.s.)+p configuration is too small then the cross section for the (p, α) reaction may be too small making this resonance "invisible" on top of the "background" of other T=1 states in ¹⁰B. This may also explain the results of [11] where excited states of ¹⁰B were populated in the ¹¹B(³He, α)¹⁰B reaction and the 11.5 MeV

state was only observed in the ⁶Li+ α decay channel, and not in the 9Be(g.s.)+p channel. We estimate that the proton dimensionless reduced width for the 4⁺ state has to be less than 2x10⁻⁴ to make it unobservable in our measurements. This is 0.6% of the proton dimensionless reduced width of the 2⁺ that corresponds to the same rotational band. As shown in Fig. 2 the resonance structure at 11.6 MeV excitation in ¹⁰B is evident, but it corresponds to the 1⁻ state with weak α -cluster component. It is possible that this state is the isobaric analog for the 10.57 MeV state with uncertain (≥ 1) spin-parity assignment in ¹⁰Be [12]. The finding of a new broad T=1 0⁺ state at ~11 MeV was surprising. Its large partial α width is the direct evidence for the extreme α cluster structure of this state.

FIG. 2. Excitation functions of ${}^{9}Be(p, \alpha){}^{6}Li(T=1, 0^{+}, 3.56 \text{ MeV})$ and the R-matrix fits with three different spinparity assignments for the state at 5 MeV (11.6 MeV excitation energy). The best fit has a 1⁻ spin-parity assignment, as shown by the solid (red) line, the fit with a 4+ state is shown by the dashed (blue) line, and the fit with a 3⁻ state is shown by the dot-dash (green) line. All three fits agree with the data relatively well at lower angles, but only the fit with a 1⁻ state agrees well with higher angle data.

Acknowledgements

This work was supported in part by the National Science Foundation under Grant Nos. PHY-456463 and PHY-1064819 and by the US Department of Energy Grant Nos. DE-FG02-93ER40773 and DE-FG52-06NA26207.

- [1] J. Hiura and R. Tamagaki, Prog. Theor. Phys. Suppl. 52, 25 (1972).
- [2] L.L. Ames et al., Phys. Rev. C 25, 729 (1982).
- [3] S.R. Riedhauser et al., Phys. Rev. C 29, 1991 (1984).
- [4] W. von Oertzen, Z. Phys. A 354, 37 (1996).

- [5] A. Dote, H. Horiuchi, and Y. Kanada-Enyo, Phys. Rev. C 56, 1844 (1997).
- [6] N. Itagaki and S. Okabe, Phys. Rev. C 61, 044306 (2000).
- [7] N. Curtis et al., Phys. Rev. C 64, 044604 (2001).
- [8] M. Milin et al., Nucl. Phys. A753, 263 (2005).
- [9] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006).
- [10] A.N. Kuchera et al., Phys. Rev. C 84, 054615 (2011).
- [11] M. Uroic et al., AIP Conference Proceedings 1165, 31 (2009).
- [12] D.R. Tilley et al., Nucl. Phys. A745, 155 (2004).